STRADA 4T 10W-30

4T MOTORCYCLE OIL SYNTHETIC ESTER MATRYX® TECHNOLOGY

HIGH PERFORMANCE SYNTHETIC ESTER 4 STROKE MOTORCYCLE OIL DEVELOPED TO EXCEED THE REQUIREMENTS OF ALL BIKE MANUFACTURERS WHERE VISCOSITY GRADE IS APPROPRIATE.

THE USE OF OUR PROPRIETARY **ESTER MATRYX®** TECHNOLOGY, ALONG WITH INNOVATIVE ADDITIVE CHEMISTRY GUARANTEES PERFORMANCE WITHOUT ANY COMPROMISE ON COMPONENT WEAR, ENGINE RELIABILITY OR CATALYTIC CONVERTER COMPATIBILITY. THIS PRODUCT PROVIDES PROVEN LUBRICATION OF ENGINE & GEARBOX WHILST MAINTAINING THE HIGHEST LEVEL OF CLUTCH FRICTION.

APPLICATIONS

ALL ROAD & OFF-ROAD 4 STROKE MOTORCYCLES WITH OR WITHOUT INTEGRAL GEARBOX AND WET OR DRY CLUTCH. MAIN USES: HIGH PERFORMANCE ROAD BIKES, MOTOCROSS, ENDURO, SPORT BIKES, STREET BIKES (INCLUDING THOSE FITTED WITH CATALYTIC CONVERTER), DESERT, SCOOTER, ATV, UTV.

KEY FEATURES

- SYNTHETIC ESTER MATRYX® TECHNOLOGY
- RESISTANT TO PERMANENT VISCOSITY LOSS, ESPECIALLY IMPORTANT FOR MOTORCYCLES WITH COMBINED CRANKCASE AND TRANSMISSION
- OUTSTANDING VALVETRAIN WEAR PROTECTION DEMONSTRATED BY ASTM D6891 SEQUENCE IV-A RESULTS
- LOW OIL CONSUMPTION
- PROVEN DEPOSIT CONTROL CHEMISTRY
- EXCELLENT STATIC AND DYNAMIC FRICTION CHARACTERISTICS FOR PERFECT OIL IMMERSED CLUTCH OPERATION DURING INITIAL ENGAGEMENT, CONSTANT SPEED AND ACCELERATION PHASES.

PERFORMANCE

JASO JASO T904:2016 - MA2 T904:2016 - MA

MAY BE USED WHERE API SL, SJ, SH OR SG ARE REQUIRED IN ALL POWERSPORT APPLICATIONS.

STRADA 4T 10W-30 IS SUITABLE FOR USE IN ALL HONDA®, YAMAHA® AND OTHER EQUIPMENT WHERE SAE 10W-30 AND ABOVE PERFORMANCE SPECIFICATIONS ARE APPROPRIATE.

PROPERTY	METHOD	UoM	TYPICAL	JASO LIMITS
SAE VISCOSITY	SAE J300	-	10W-30	-
SAE VISCOSITY	SAE J306	-	75W-85	-
RELATIVE DENSITY @ 15°C	ASTM D4052	g/cm3	0.8680	REPORT
KINEMATIC VISCOSITY @ 40°C	ASTM D445	mm2/s	63.30	REPORT
KINEMATIC VISCOSITY @ 100°C	ASTM D445	mm2/s	10.40	9.3<12.5
VISCOSITY INDEX	ASTM D2270	-	152	REPORT
CCS VISCOSITY @ -25°C	ASTM D5293	mPa.s	6000	7000 MAX.
HTHS VISCOSITY @ 150°C	ASTM D5481	mPa.s	4.2	2.9 MIN.
TOTAL BASE NUMBER (TBN)	ASTM D2896	mgKOH/g	7.4	REPORT
FLASH POINT (CoC)	ASTM D92	°C	242	REPORT
POUR POINT	ASTM D97	°C	-39	REPORT
EVAPORATIONAL LOSS - NOACK (250°C)	ASTM D5800B	% mass	9.1	20 MAX.
KO SHEAR STABILITY - AFTER SHEAR (100°C)	ASTM D6278	mm2/s	9.6	9.0 MIN.
SHEAR STABILITY INDEX – SSI	ASTM D6278	%	7.7	-
FOAMING TENDENCY - SEQUENCE I (24°C)	ASTM D892	mL	0-0	10-0
FOAMING TENDENCY - SEQUENCE II (93.5°C)	ASTM D892	mL	0-0	50-0
FOAMING TENDENCY - SEQUENCE III (24°C)	ASTM D892	mL	0-0	10-0
SULPHATED ASH	ASTM D874	% mass	1.1	1.2 MAX.
APPEARANCE	ASTM D4176-1	-	CLEAR & BRIGHT	REPORT
COLOUR	VISUAL	-	AMBER	REPORT

Syntol Lubricants

Moss Hall, Moss Hall Lane. Warrington, Cheshire, WA4 4PB, United Kingdom Tel: 0333 577 1226 Email: sales@syntol-lubricants.com Web: www.syntol-lubricants.com

